A beating heart. A complicated organ that pumps blood around the body of animals and humans. Not exactly something you associate with a Petri dish in a laboratory.
But that may change in the future, and save the lives of people whose own organs fail. And the research is now one step closer to that.
To design artificial organs you first have to understand stem cells and the genetic instructions that govern their remarkable properties.
Professor Joshua Mark Brickman at the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) has unearthed the evolutionary origins of a master gene that acts on a network of genes instructing stem cells.
“The first step in stem cell research is to understand the gene regulatory network that supports so-called pluripotent stem cells. Understanding how their function was perfected in evolution can help provide knowledge about how to construct better stem cells,” says Joshua Mark Brickman.
Pluripotent stem cells are stem cells that can develop into all other cells. For example, heart cells. If we understand how the pluripotent stem cells develop into a heart, then we are one step closer to replicating this process in a laboratory.
Source: Read Full Article